Challenges and Applications of Machine Learning to Manufacturing Problems

6th Mathias Seminar – Cannes

Oct 18th, 2006

Olivier Bousquet
Agenda

- What is Machine Learning?
- Current trends and challenges
- Applications
What is Machine Learning

- **Building models from data** (as opposed to ‘from first principles’)
- Can be used to model physical phenomena
- But also many other complex phenomena/systems
 - Recognition problems (speech, handwritten text, images)
 - Web problems
 - Industrial processes
 - Bioinformatics
- **Three possible goals**
 - Analyze data to extract relevant information
 - Solve a complex problem without an explicit program
 - Perform prediction of complex phenomena
What is specific?

- A specific way of processing data in order to make an inductive leap
- Induction is a gamble
- Based on your knowledge and observations you bet on the future outcomes or on the underlying structure (or regularities)

Example
- after observing planets moving, Newton bet that the law would be of a certain form (it is correct as long as no observation contradicts it)

Two dual views
- **Prediction**: the extracted model is used to perform prediction of unobserved data
- **Compression of regularities**: the extracted model is a summary of the observations
Supervised Learning

Most common situation
- Observations: \((x_1, y_1), \ldots, (x_n, y_n)\)
- Goal: construct a function \(f\) which
 1. maps \(x\)’s to \(y\)’s
 2. agrees well with the observations
 3. makes correct predictions for unobserved \(x\)’s

Classification
- \(Y\) is in a finite set of “classes”, \(Y=\{1,2,\ldots,k\}\)
- Ex: recognition problems, spam filtering…

Regression
- \(Y\) is a real number
- Ex: yield of a manufacturing process

Structured learning
- \(Y\) is a “structured object”, such as a string, a text, an image, a graph…
- Ex: protein secondary structure prediction
General Methodology

- **There are 3 main steps**
 1. Choice of a formalism for specifying the model (i.e. a mathematical/algorithmic form)
 2. Introduction of a preference over the elements of the model
 3. Choice of a way to trade-off between the preference and the agreement with the data

- **Examples**
 - Probabilistic modeling (Bayesian)
 1. Multivariate normal distribution (on the X space), linear model from X to Y
 2. Prior distribution on the weight vector
 3. Bayes rule, Maximum Likelihood estimation
 - Linear classification
 1. Thresholded linear model
 2. l_1-norm penalty for the weight vector
 3. Minimum of mean classification error plus norm (regularization)
Agenda

• What is Machine Learning?

• Current trends and challenges

• Applications
Challenges

- **Growth of data**
 - Data storage / processing is cheaper and cheaper
 - Sensors are cheaper and cheaper
 - Produced data is more and more structured (no longer simple measurements but images, spectra, videos, structured text...)

- **Leads to very high dimensional problems**

- **Growth of the tool set**
 - Many communities are producing data analysis techniques (Statistics, Data Mining, Machine Learning...)
 - Many specialized techniques developed in separated fields (image processing, speech, text, DNA...)

- **Requires principled approaches**
Historical perspective (very sketchy)

- **Statistics**
 - parametric: finite-dimensional models, may not be consistent (no convergence even with infinite amount of data)
 - non-paramteric: usually relying on models that are not adapted to high dimensional X

- **Machine Learning**
 - Symbolic methods: Decision Trees, Rules, ILP… (lead to NP-hard problems – need for heuristics)
 - Non-symbolic: Perceptron (linear classifier), Neural networks…

- **First step: from combinatorial to smooth optimization**

- **Second step: from smooth to convex**
 - Makes optimization tractable
 - Allows to tackle large scale problems in a principled way
Modern approaches

- **Current trends: solving high dimensional structured problems**

- **Two extreme cases to be considered**
 - Small number of observations (when testing is expensive, e.g. clinical studies, batch manufacturing,...)
 - Large number of observations (data streams, internet data...)

- **Trends**
 - Formulate problems as convex optimization ones
 - Use/Develop methods for large scale optimization problems
 - Regularized linear methods often used
 - Develop tools for dealing with structured data
Dealing with high dimensions

- **Two directions**
 - Reducing the dimension
 - Regularization

- **Both turn out to be very similar**

- **Reducing the dimension**
 - Feature selection: select a subset of the variables
 - Feature construction (e.g. boosting): create a small number of combined variables
 - Manifold learning: extract a low-dimensional manifold underlying the data distribution
Margin-based approaches

- **Idea:** create linear model
 \[f(x) = \text{sgn}\left(\sum_{i=1}^{d} w_i x_i\right) \]

- **But in high dimensional space**
 - **Need regularization**
 - It is easy to fit the training data (when dimension is larger than the sample size)
 - This leads to overfitting (no generalization, error is 0 on the training set but large on validation set)
 - To overcome this, we need to restrict the weight vector

 - **\(L_2 \) regularization**
 - inner product structure, kernels
 \[w = \arg \min \sum_{i=1}^{n} \ell(\text{sgn}(w^T x_i), y_i) + \lambda \|w\|_2^2 \]

 - **\(L_1 \) regularization**
 - sparsity
 \[w = \arg \min \sum_{i=1}^{n} \ell(\text{sgn}(w^T x_i), y_i) + \lambda \|w\|_1 \]

O. Bousquet: Challenges and Applications of Machine Learning October 18th, 2006
Regularization

- **Two main approaches**
 - Tikhonov (e.g. SVM, Kernel Ridge Regression)
 \[w = \arg \min \sum_{i=1}^{n} \ell(\text{sgn}(w|x_i), y_i) + \lambda \|w\|^2 \]
 - Iterations (e.g. AdaBoost, PLS), update the weight vector so as to minimally increase the norm (projection methods)

- **In both cases, need to choose the parameter (lambda or number of iterations) adequately, usually by cross-validation**
Using the Euclidean structure and duality of the optimization problem

- Solution of the problem expressed only in terms of inner products
- Representer theorem
 \[\langle w | x \rangle = \sum_{i=1}^{n} \alpha_i \langle x_i | x \rangle \]

With an appropriate loss function, solution is sparse: only few non-zero coefficients
Inner products can be replaced by other “similarity” measures
- Requirement for convexity of the optimization problem: behave like an inner product in some abstract space
- Notion of positive definite kernel
 \[\sum_{i=1}^{n} c_i c_j k(x_i, x_j) \geq 0 \]

Corresponds to an implicit mapping to a higher dimensional space
\[k(x, x') = \langle \phi(x) | \phi(x') \rangle \]

Known and used for a long time in geostatistics (kriging), but their power really comes in high dimensions
Kernels: applications

- **Dimensionality of the optimization problem is equal to the number of data points (irrespective of the dimension of the space)**
 - Allows to deal with high-dimensional problems
 - Allows to deal with structured inputs (just need to compute a similarity). Examples: kernels for strings, graph elements, graphs, images, groups of points, distributions...

- **Allows to generate non-linear decision boundaries**
 - Without increasing the complexity of the problem to solve
 - Allows to incorporate implicit knowledge (sometimes similarity is easier to define than explicit features, e.g. for sequences)
 - Many standard techniques can be non-linearized (PCA, PLS, ICA...)

L₁: Boosting Methods

- **Idea**
 - L₁ regularization leads to sparse solutions (only a few non-zero coefficients) in the weight vector
 - So one can deal with large dimensions and produce (relatively) simple solutions
 - One can even create additional dimensions by using simple learning algorithms

- **Principle**
 - Choose a set of possible basis decision functions H
 - Create a regularized linear combination of them (e.g. convex)

\[
f(x) = \text{sgn}\left(\sum_{i=1}^{m} \alpha_i h_i(x)\right)
\]
Boosting: infinite dimensional optimization

- **Usually hypothesis spaces are infinite**
 - No direct way to deal with such problems
 - Solution: using an iterative optimization approach
 - Trick: sparsity ensures that this will converge fast

- **Approach**
 - Maintain a set of weights over the examples
 - At each step, look for hypothesis making the smallest weighted error
 - Add this hypothesis to the combination
 - Update the weights (typically increasing that of misclassified examples)
Computational Aspects

- **Kernels**
 - Effectively work in high (possibly infinite) dimensional spaces
 - No need to explicitly compute the feature representation
 - Computational effort in the kernel computation (e.g. dynamic programming)

- **Boosting**
 - Effectively works in infinite spaces
 - Computational effort in the search for the best hypothesis (e.g. dynamic programming)
Another distinctive feature: adapted loss functions for various problems

Principles
- No need to estimate parameters
- No need to find the right model
- Accuracy is required only in regions of high probability
- Consider the end goal directly
- Focus on the right problem: no need to estimate P(X,Y) but only P(X|Y)

Examples
- Classification: hinge loss (1-x)+ instead of square loss
- Ranking: number of wrongly ordered pairs
- Optimization: not position, but value close to maximum
- Control setting: end quality, not model quality
Agenda

- What is Machine Learning?
- Current trends and challenges
- Applications
Consider a manufacturing process

For each produced batch or product data are collected
- Raw material characteristics
- Process parameters
- Inline sensors
- Final quality information

Goal: based on on-going production data, improve the process
- Understand sources of quality variability
- Monitor the process and identify failures early
- Suggest ways to improve the parameters settings
- Provide a model for dynamical control of the process
What is needed?

- **Efficient and versatile data analysis**
 - Ability to cope with real-world data (missing values, noise, mixed data types...)
 - Ability to take into account operational constraints

- **Interaction with experts (with varied levels of data analysis expertise)**

- **Guidance towards operational actions**
 - Focus is not on good predictions but on correctly identifying the best parameter zone
Example from Pharmaceutical Manufacturing
- Tablet manufacturing
- Mixing various ingredients with measured physical properties
- Goal is to obtain good quality tablets (fast dissolution, non-brittle…)

Process control in two steps
- Estimate properties of raw material (excipient and active ingredients) from NIR spectra
- Determine appropriate process parameters (that adapt to the raw material quality)

Requires to mix two kinds of data
- Advanced sensors (NIR spectra)
- Process parameters
Tablet manufacturing

- Raw data contains 104 static variables (input and process parameters)
- 2 sets of spectra
Data

- Historical data (44 batches)
 - Spectrograms
 - API/Excipients characteristics
 - Process parameters

- To be combined with
 - Expertise
 - Regulatory / Process constraints
Analysis

- **Spectral calibration**
 - Wavelet transform (extract meaningful variability)
 - Combination of algorithms
 1. Build a model with each of the algorithms (e.g. SVM, PLS, Boosting)
 2. Combine the models to get maximum predictive accuracy
 - Determine the excipient type (perform prediction from the spectrum)
 - Determine the level of API purity (perform prediction from the spectrum)

- **Generate rule-based model**
 - Extract a set of explanatory rules from batch data
Rule-based model

- **Model is composed of several rules**
 - Rule = hyper-rectangle in parameter space
 - These rules map the parameter space
 - Model is piecewise constant

- **Why do we need more than one rule?**
 - Different situations to be covered
 - Different settings needed as a function of the raw material characteristics

1. Depending on the value of API impurity
2. Different compression force should be applied

![Diagram showing the relationship between API impurity and compression force with quadrants indicating 'OK' for different settings.]
Build an explanatory model

- **Such a model can be**
 - Automatically generated from the data
 - Easily edited by the user

- **Enhancing the rules with human expertise and practical constraints**
 - Reviewing the effect of adding parameters
 - Reviewing the effect of constraining the range of parameters
 - Iterative process guided by rule indicators

- **Goal of this process**
 - Build understanding
 1. Identify influence of API/excipient characteristics on the end quality
 2. Determine conjoint influence of the parameters on the end quality
 - Based this information, determine the best settings for process parameters
Other applications

- Speed-up complex optimization problems (when evaluating the function is costly), cf David’s talk
- Building control models in dynamically changing environments (Reinforcement Learning)
- Estimating parameters of differential equations (work in progress)
- Generally speaking: a more direct approach, no need to model exactly the problems, focus on the end goal
Conclusion

- The diversity and size of problems to be addressed is growing dramatically
- Versatile techniques are being developed
 - to cope with high-dimensional problems,
 - based on large-scale convex optimization problems
 - with a philosophy of focusing on the final goal rather than the accuracy of the model
- Choosing the right kernel/basis hypotheses is still an art rather than a science
- Applications to industrial problems
 - raise interesting new questions
 - require combination with more “explicit” methods
 - direction of research: combining empirical with first principles models